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Abstract. This note gives an alternate proof of Clairaut’s theorem—that the partial derivatives
of a smooth function commute—using the Stone–Weierstrass theorem.

Most calculus students have probably encountered Clairaut’s theorem.

Theorem. Suppose that f : [a, b] × [c, d] → R has continuous second-order partial
derivatives. Then fxy = fyx on (a, b)× (c, d).

The proof found in many calculus textbooks (e.g., [2, p. A46]) is a reason-
ably straightforward application of the mean value theorem. More sophisticated
techniques—Fubini’s theorem and Green’s theorem—can each be used to give easy
proofs (for instance, [1, p. 61], exercise 3-28). The proof here relies on the density of
two-variable polynomials in C([a, b] × [c, d]). More precisely, we use the following
version of the Stone–Weierstrass theorem.

Theorem. Let g ∈ C([a, b] × [c, d]). There is a sequence pn(x, y) of two-variable
polynomials such that pn → g uniformly.

Applying the theorem to the continuous function fxy gives a sequence of polyno-
mials pn such that

|pn(x, y)− fxy(x, y)| < ε(n) for all (x, y) ∈ [a, b] × [b, c]

where limn→∞ ε(n) = 0.
Therefore, for any rectangle R = [x1, x2] × [y1, y2] ⊂ [a, b] × [c, d],∣∣∣∣∫∫

R
pn dxdy −

∫∫
R

fxy dxdy

∣∣∣∣ < ε(n)A(R), (1)

where A(R) = (x2 − x1)(y2 − y1) is the area of the rectangle R. Observe that∫∫
R

fxy dxdy =
∫∫

R
fyx dydx,

since both are equal to f (x2, y2)− f (x2, y1)− f (x1, y2)+ f (x1, y1).
Since pn is a polynomial, it is a trivial computation to verify that∫∫

R
pn dxdy =

∫∫
R

pn dydx

for each n ∈ N (this also follows from Fubini’s theorem, but even without assuming
Fubini’s theorem, equality is straightforward since both integrals can be directly com-
puted).
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Therefore, we also have∣∣∣∣∫∫
R

pn dydx −
∫∫

R
fyx dydx

∣∣∣∣ < ε(n)A(R). (2)

Taking a limit as n→∞, (2) becomes∫∫
R

fxy − fyx dydx = 0. (3)

Since fyx − fxy is continuous and (3) is true for all rectangles R, fyx − fxy is identi-
cally zero, that is, fxy = fyx .

As a side remark, the same approach proves the equality of iterated integrals in the
Fubini theorem for continuous functions. To see this, given f ∈ C([a, b] × [c, d]),
take pn → f , so ∫ d

c

∫ b

a
pn(s, t) dsdt →

∫ d

c

∫ b

a
f dsdt∫ b

a

∫ d

c
pn(s, t) dtds →

∫ b

a

∫ d

c
f dtds.

As above, the two integrals on the left are equal for all n, so by uniqueness of limits,
the right hand sides are also equal.
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