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Abstract. We prove a geometric formula for the isoperimetric deficit of

a smooth domain in a constant curvature model space.

If γ is a simple closed curve of length L in the plane bounding a region of

area A, the classical isoperimetric inequality asserts that L2 − 4πA ≥ 0. More

generally, if the curve γ lies in one of the constant curvature model spaces

H2,R2, or S2, then L2 − 4πA+KA2 ≥ 0, where K is the Gaussian curvature

of the ambient space. In each case, equality holds precisely when γ is a circle.

A large body of work has focused on stability in the isoperimetric inequality.

The basic idea of such work is to show that the isoperimetric deficit L2 −
4πA + KA2 bounds a nonnegative quantity measuring the asymmetry of the

underlying curve γ, so that a curve with small isoperimetric deficit is then close

to a circle in a quantitative way. In reference to Bonnesen’s work [3] on the

topic in the 1920s, Osserman [8] calls any inequality of the form L2 − 4πA +

KA2 ≥ B a Bonnesen inequality, provided the quantity B is non-negative, has

geometric significance, and vanishes only when γ is a geodesic circle.

Theorem. Let Ω ⊂M2 be a domain with C1 boundary, where M2 is R2, S2,

or H2. Let A be the area of Ω and L the boundary length. Then

L2 − 4πA+KA2 =
1

2

∫
∂Ω×∂Ω

|νx − Rνy|2 dsxdsy,(0.1)

where K is the curvature of M , ν is the unit outward pointing normal field

along ∂Ω, and R is the reflection in M sending x to y.
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Figure 1. A portion of a boundary curve, two boundary

points and their normals, and the reflected vector Rνy.
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On the right hand side of (0.1), we have defined a notion of asymmetry based

on comparing the outward pointing normal vectors of the boundary points. To

be more precise, note that given distinct points x, y ∈M2, where M2 is either

H2,R2, or S2, there is a unique involutive isometry R : M2 → M2 sending x

to y. We call R a reflection. In the vicinity of a pair x, y of boundary points,

|νx − Rνy|2 measures the asymmetry of the domain under R.

Background.

When Ω is a convex domain in R2, (0.1) is equivalent to a formula first

derived by Pleijel [9], who concludes after simplifying an integral over the

space of oriented lines intersecting Ω that

L2 − 4πA = 2

∫
∂Ω×∂Ω

sin2 1
2 (θx − θy) dsxdsy,

where θx and θy are the angles the tangents to ∂Ω make with the line passing

through x and y. Using trigonometric identities, it is not difficult to see that

(using the notation of (0.1)) 2 sin2 1
2 (θx − θy) = 1

2 |νx − Rνy|2.

Banchoff and Pohl [1] later generalized Pleijel’s result, replacing ∂Ω with a

general and possibly non-simple smooth curve γ in R2 and proving

L2 − 4π

∫
R2

w2(p) dA = 2

∫
γ×γ

sin2 1
2 (θx − θy) dsxdsy,

where given p ∈ R2, w(p) is the winding number of γ about p. Other authors

[7, 10] have proved isoperimetric inequalities in related settings by computing

double boundary integrals.

Another notable result is due to Chakerian [4], who proves that the area A

and boundary length L of a two-dimensional minimal surface in Rn bounded

by a curve γ, normalized so that the position vector field X on Rn satisfies∫
γ
Xds = 0, satisfy

L2 − 4πA ≥ 2π2

L

∫
γ

∣∣∣∣X − L

2π
ν

∣∣∣∣2 ds.
Beginning with the breakthrough work in [5], the last decade has seen a

renewed interest in stability in the isoperimetric inequality. Fusco and Julin

[6] have proved a stability inequality which is particularly interesting in com-

parison to (0.1). Although their results hold in much greater generality, in the

special case that Ω ⊂ R2 is a domain with smooth boundary and is normalized

to have measure |Ω| = π, Fusco and Julin define an asymmetry index A(Ω) by

A(Ω) = min
y∈R2

{
|Ω∆B1(y)|+

(∫
∂Ω

|νΩ(x)− νB1(y)(πy(x))|2dsx
)1/2

}
,

where Ω∆B1(y) denotes the symmetric difference (Ω \ B1(y)) ∪ (B1(y) \ Ω),

B1(y) is the unit ball centered at y, πy : R2 \ {y} → B1(y) is the radial
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projection, and prove that

A(Ω)2 ≤ C(L− 2π),

where C is a constant which is independent of Ω. We note that Bögelein,

Duzaar, and Fusco [2] have recently proved an analogous inequality for domains

in the sphere Sn.

The Proof.

We first consider the euclidean case. It is convenient to define r := |x − y|
and denote derivatives with respect to x or y by appropriate subscripts, so that

∇xr = −∇yr = 1
r (x− y). In this notation, we have that Rνy = νy + 2 ∂r

∂νy
∇xr,

where ∂r
∂νy

:= 〈∇yr, νy〉, so that

1

2
|νx − Rνy|2 = 1−

〈
νy + 2

∂r

∂νy
∇xr, νx

〉
.

Next, using that νy is a constant vector field with respect to x, compute

divx

(
∂r

∂νy
∇xr

)
=

〈
∇x

∂r

∂νy
,∇xr

〉
+

∂r

∂νy
∆xr

= (∇2
xr)(∇xr, νy) +

∂r

∂νy
∆xr

=
1

r

∂r

∂νy
,

where we have used that the hessian ∇2
xr satisfies ∇2

xr = rdθ ⊗ dθ in local

polar coordinates centered about x.

Combining the above items with the divergence theorem, we find

1

2

∫
x∈∂Ω

|νx − Rνy|2 = L− 2

∫
x∈Ω

1

r

∂r

∂νy
.

Integrating again and using Fubini’s theorem, we conclude that

1

2

∫
∂Ω×∂Ω

|νx − Rνy|2 dsxdsy = L2 − 2

∫
x∈Ω

∫
y∈∂Ω

1

r

∂r

∂νy

= L2 − 2

∫
x∈Ω

∫
y∈Ω

∆y log r

= L2 − 4πA,

where we have used that 1
r
∂r
∂νy

= ∂ log r
∂νy

and that ∆y log r = 2πδx−y. This

completes the proof of (0.1) in the euclidean setting.

We now consider the case where M2 is either S2 or H2. For uniformity of

presentation, we find the following notation convenient. We embed M2 in R3

by

M2 = {x ∈ R3 : 〈x, x〉 = 1},
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where in the case of H2, 〈 , 〉 denotes the Lorentzian scalar product on R3 = R2,1

defined by 〈x, y〉 := −x1y1 − x2y2 + x3y3, and in the case of S2, 〈 , 〉 represents

the usual euclidean inner product on R3. To avoid confusion, we denote the

induced Riemannian metric on H2 with a dot ·, so that given u, v ∈ TxH2, we

have u · v := −〈u, v〉.

Notation 0.2. When we write an equation involving one or several instances of

the expressions ± or ∓, we mean that the equation with the top argument(s)

holds on S2 and that the equation with the bottom argument(s) holds on H2.

For example, the isoperimetric inequality can be written L2 ≥ 4πA ∓ A2 in

this notation.

The following lemma collects some facts used in the proof below.

Lemma 0.3. (i)
1

2
|νx − Rνy|2 = 1∓ 〈νy, νx〉 ∓

〈x, νy〉〈y, νx〉
1− 〈x, y〉

.

(ii) divx

(
ν>y +

〈x, νy〉
1− 〈x, y〉

y>
)

= − 〈x, νy〉
1− 〈x, y〉

.

(iii) divy

(
x>

1− 〈x, y〉

)
= 1∓ 4πδ.

Proof. Since R is induced by the ambient Euclidean or Lorentzian reflection

interchanging x and y,

Rνy = νy − 2〈νy, x− y〉
x− y
|x− y|2

= νy −
〈νy, x〉

1− 〈x, y〉
(x− y).

Because Rνy and νx are unit vectors we then find (recall 0.2)

1

2
|νx − Rνy|2 = 1∓ 〈Rνy, νx〉

= 1∓
〈
νy −

〈x, νy〉
1− 〈x, y〉

(x− y), νx

〉
= 1∓

〈
νy +

〈x, νy〉
1− 〈x, y〉

y, νx

〉
.

The following observation will be useful below: given a constant vector field

w on R3, its tangential projection w> := w − 〈w, x〉x to M2 satisfies

divx(w>) = −2〈x,w〉.(0.4)

This is easily checked in local coordinates; when M = S2, (0.4) is an immediate

consequence of the fact that the coordinate functions xi satisfy (∆S2 +2)xi = 0.
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For (ii) we compute using the product rule and (0.4)

divx

(
ν>y +

〈x, νy〉y>

1− 〈x, y〉

)
= −2〈νy, x〉+

〈ν>y , y>〉 − 2〈x, νy〉〈x, y〉
1− 〈x, y〉

+
〈x, νy〉|y>|2

(1− 〈x, y〉)2

= −2〈νy, x〉+
〈ν>y , y>〉 − 2〈x, νy〉〈x, y〉+ 〈x, νy〉(1 + 〈x, y〉)

1− 〈x, y〉

= −2〈νy, x〉+
〈ν>y , y>〉 − 〈x, νy〉〈x, y〉+ 〈x, νy〉

1− 〈x, y〉

= −〈νy, x〉+
〈ν>y , y>〉
1− 〈x, y〉

= − 〈x, νy〉
1− 〈x, y〉

,

where we have used that |y>|2 = 1 − 〈x, y〉2 and 〈ν>y , y>〉 = −〈x, y〉〈x, νy〉 to

simplify.

For (iii), compute also using (0.4)

divy

(
x>

1− 〈x, y〉

)
=
−2〈x, y〉
1− 〈x, y〉

+
〈x>, x>〉

(1− 〈x, y〉)2
= 1,

where we have used that 〈x>, x>〉 = 1− 〈x, y〉2 = (1− 〈x, y〉)(1 + 〈x, y〉). This

completes the calculation in (iii) for x 6= y.

Now fix x ∈ M2 and let U ⊂ M2 be a domain containing x. By the

divergence theorem,

∫
∂U

x> · νy
1− 〈x, y〉

=

∫
U\Bε(x)

divy

(
x>

1− 〈x, y〉

)
+

∫
∂Bε(x)

x> · νy
1− 〈x, y〉

,

where the last νy is the outward pointing normal to the Bε(x). We now consider

the cases M = S2 and M = H2 separately. When M = S2, elementary

geometry shows that on ∂Bε(x), νy = (〈x, y〉y−x)/(1−〈x, y〉2)1/2. Using this

and that x> · νy = 〈x, νy〉 on S2, we find

lim
ε↘0

∫
∂Bε(x)

x> · νy
1− 〈x, y〉

= lim
ε↘0

∫
∂Bε(x)

〈x, y〉2 − 1

(1− 〈x, y〉)(1− 〈x, y〉2)1/2

= − lim
ε↘0

∫
∂Bε(x)

(
1 + 〈x, y〉
1− 〈x, y〉

)1/2

= −4π,

where we have used that 〈x, y〉 = cos ε on ∂Bε(x). A similar calculation shows

the required result on M = H2, using there that on ∂Bε(x), 〈x, y〉 = cosh ε

and νy = (〈x, y〉y − x)/(〈x, y〉2 − 1)1/2. �
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We are now ready to complete the proof of the theorem in the nonzero

curvature case. Using Lemma 0.3 we have

1

2

∫
x∈∂Ω

|νx − Rνy|2 = L∓
∫

x∈∂Ω

〈
νy +

〈x, νy〉
1− 〈x, y〉

y, νx

〉

= L−
∫
x∈Ω

divx

(
ν>y +

〈x, νy〉
1− 〈x, y〉

y>
)

= L−
∫
x∈Ω

〈x, νy〉
1− 〈x, y〉

.

Integrating over y ∈ ∂Ω and changing the order of integration, we have then

1

2

∫
∂Ω×∂Ω

|νx − Rνy|2 dsxdsy = L2 −
∫
x∈Ω

∫
y∈∂Ω

〈x, νy〉
1− 〈x, y〉

= L2 ∓
∫
x∈Ω

∫
y∈Ω

divy

(
x>

1− 〈x, y〉

)

= L2 ±
∫
x∈Ω

∫
y∈Ω

1∓ 4πδ

= L2 ±A2 − 4πA.
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[7] Frédéric Hélein. Inégalité isopérimétrique et calibration. Ann. Inst. Fourier (Grenoble),

44(4):1211–1218, 1994.

[8] Robert Osserman. Bonnesen-style isoperimetric inequalities. The American Mathemat-

ical Monthly, 86(1):1–29, 1979.

[9] Arne Pleijel. Zwei kurze beweise der isoperimetrischen ungleichung. Archiv der Mathe-

matik, 7(4):317–319, Oct 1956.

[10] Andrew Stone. On the isoperimetric inequality on a minimal surface. Calc. Var. Partial

Differential Equations, 17(4):369–391, 2003.

Department of Mathematics, University of Pennsylvania, Philadelphia PA 19104

Email address: pjmcgrat@sas.upenn.edu


