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Abstract. We give an elementary proof of the Jordan Brouwer separation theorem for smooth
hypersurfaces using the divergence theorem and the inverse function theorem.

Theorem 1. Let � ⊂ R
n be a smooth, closed, connected, orientable hypersurface.

R
n − � is a disjoint union of two connected open sets each of which has boundary �.

The standard differential topology proof of Theorem 1 (e.g., see [2]) uses mod 2
intersection theory and requires Sard’s theorem and the transversality theorems as
necessary technical ingredients. Here, we forgo Sard’s theorem and instead use the
fundamental solution of Laplace’s equation and the divergence theorem for technical
power. Our proof uses the tubular neighborhood theorem to establish local candidate
“inside” and “outside” sets that we are able to consistently extend to all of Rn − � by
the divergence theorem.

We call a subset � ⊂ R
n a smooth hypersurface if for each p ∈ � there is an open

set U ⊂ R
n containing p and a smooth map � : U → R such that ∇�(p) �= 0 and

�−1(0) = � ∩ U . We say a vector v ∈ R
n is normal to � at p if v is parallel to ∇�(p).

Finally, we say � is orientable if there exists a smooth vector field �n : � → R
n such

that |�n p| = 1 and �n p is normal to � for each p ∈ �.

Proof. Fix a choice of a unit normal vector field �n on �. A corollary of the inverse
function theorem and compactness of � is the tubular neighborhood theorem.

Lemma 1. There exists ε > 0 such that � × (−ε, ε) is diffeomorphic to

Nε = {p + t �n p : |t | < ε, p ∈ �} ⊂ R
n

by the map (p, t) 	→ p + t �n p. Moreover, each point q = p + t �n p in Nε has a unique
closest point in �, namely p.

The proof is simple; the interested reader may find it for instance in [3].
For a subset S ⊂ (−ε, ε), we denote �S by the image of � × S under the above

diffeomorphism; likewise, we denote �s by the image of � × {s} for |s| < ε.
It will be convenient to use the fundamental solution of Laplace’s equation � :

R
n/{0} → R defined by

�(y) =

⎧⎪⎨
⎪⎩

1

2π
log |y| (n = 2)

1

(2 − n)ωn
|y|2−n (n > 2).
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We use below the standard fact (cf. [1], p. 22) that for each fixed x ∈ R
n , the function

�x(y) := �(y − x) satisfies ��x = 0, where the laplacian is taken with respect to y.
We fix some notation. For an open bounded subset U ⊂ R

n for which ∂U is C1, we
denote by ν the unit outward normal vector field on ∂U . For smooth functions f , we
denote ∂ f

∂ν
:= ∇ f · ν. For a vector field F on U , we recall the divergence theorem:

∫
U

div(F) =
∫

∂U
F · ν.

Of course, when U ⊂ R
3, this is the familiar version from multivariable calcu-

lus (e.g., [4], section 16.9). Taking F = ∇ f , the divergence theorem reads
∫

U � f
= ∫

∂U
∂ f
∂ν

. Also, for v ∈ R
n , denote by Tv(M) = {p + v : p ∈ M} the translation of M

by the vector v. We endow the surfaces �s for |s| < ε and their translates the natural
choice of a unit normal coming from �n and denote it by the same symbol by abuse of
notation.

Define F� : Rn − � → R by

F�(x) =
∫

�

∂�x

∂ �n .

Lemma 2. F� is locally constant.

Proof. Fix x /∈ � and an ε1 with 0 < ε1 < ε such that x /∈ �(0,ε1). Then �ε1 and �

bound the open set �(0,ε1). By the divergence theorem and the fact that ��x = 0 on
�(0,ε1), it follows that

∫
�ε1

∂�x

∂ �n =
∫

�

∂�x

∂ �n . (1)

Now let v be a vector in R
n with |v| < ε1. Then Tv(�) and �ε1 bound an open subset

of �(−ε1,ε1), so using the divergence theorem in the same way yields

∫
�ε1

∂�x

∂ �n =
∫

Tv(�)

∂�x

∂ �n . (2)

Combining (1) and (2) gives us
∫

�

∂�x

∂ �n =
∫

Tv(�)

∂�x

∂ �n,
(3)

which after the change of variables y 	→ y + v gives F�(x) = F�(x − v).

Define

�1 = {x ∈ R
n − � : x is path connected to ∞}.

Because � is compact, there is a sufficiently large R > 0 such that the ball BR(0)

contains �. Hence, �1 is well defined, open, and connected. By shrinking R, we may
assume that ∂ BR(0) ∩ (Nε \ �) �= ∅. Since the sets �(0,ε) and �(−ε,0) are path con-
nected, it is easy to see �1 contains at least one of the sets �(0,ε) and �(−ε,0); after
possibly changing the choice of �n, we suppose �(0,ε) ⊂ �1.
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Lemma 3. F�(x) = 0 for x ∈ �1.

Proof. Compute ∇�x = 1
ωn |y−x |n (y − x) so for large |x |,

F�(x) =
∫

�

1

ωn|y − x |n (y − x) · �n.

Then by the Cauchy–Schwarz inequality,

|F�(x)| ≤
∫

�

1

ωn|y − x |n−1

and so lim|x |→∞ F�(x) = 0. The lemma follows by using Lemma 2 and taking
|x | → ∞.

Figure 1. A cartoon representation of an “exotic” surface � ⊂ R
3 to which Theorem 1 applies.

Now fix x ∈ �(−ε1,0) and pick δ > 0 small enough so that B(x, δ) ⊂ �(−ε1,0).
Applying the divergence theorem to the open set bounded by ∂ B(x, δ), � and �−ε1

we have
∫

�

∂�x

∂ �n +
∫

�−ε1

∂�x

∂ν
+

∫
∂ B(x,δ)

∂�x

∂ν
= 0.

By the argument in Lemma 3 with �−ε1 taking the role of �,
∫

�−ε1

∂�x
∂ν

= 0. A direct

computation shows
∫

∂ B(x,δ)

∂�x
∂ν

= 1 so then F�(x) = −1.
Define

�2 = {x ∈ R
n − � : F�(x) = −1}.

By the above calculation, �(−ε,0) ⊂ �2. Combining this with the fact �(0,ε) ⊂ �1 and
the observation that Rn − � splits into path components, each of which has boundary
contained in �, it follows that Rn − � = �1 ∪ �2 and the theorem is proved.
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An Identity of Carlitz and Its Generalization

In [1], Carlitz asked the readers to show that

n−1∑
k=0

Fk2n−k−1 = 2n − Fn+2 and
n−1∑
k=0

Lk2n−k−1 = 3(2n) − Ln+2,

where Fn and Ln are the nth Fibonacci and Lucas numbers.
In this note we generalize these results to the k-Horadam sequence Hk,i , which is

defined as follows [2]: for n ≥ 0, if k is any positive real number and f (k), g(k) are
scaler-value polynomials, with f 2(k) + 4g(k) > 0, then Hk,n+2 = f (k)Hk,n+1 +
g(k)Hk,n , with Hk,0 = a, Hk,1 = b, and a, b ∈ R.

Let S = ∑n−1
i=0 Hk,i xn−i−1, then

S = axn+1 + (b − a f (k))xn − Hk,n x − g(k)Hk,n−1

x2 − f (k)x − g(k)
. (4)

In fact,

S = axn−1 + bxn−2 +
n−1∑
i=2

( f (k)Hk,i−1 + g(k)Hk,i−2)xn−i−1

= axn−1 + bxn−2 + f (k)x−1
n−2∑
i=1

Hk,i xn−i−1 + g(k)x−2
n−3∑
i=0

Hk,i xn−i−1

= axn−1 + bxn−2 + f (k)x−1(S − Hk,0xn−1 − Hk,n−1)

+ g(k)x−2(S − Hk,n−2x − Hk,n−1).

Multiplying both sides of the above equation by x2 and solving for S , we then
obtain Equation (4).
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