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AbstractWe introduce the reader to some fundamental concepts from differential topology, motivated by a newproof of the fundamental theorem of algebra using the Poincaré-Hopf index theorem.
There are many proofs of the fundamental theorem of algebra, each of which brings to bear a funda-mental technique from some area of mathematics. Two of the the most well known proofs use Liouville’stheorem from complex analysis [1] and winding numbers [5]. The proof here is an advertisement for oneof the fundamental results in differential topology, the Poincaré-Hopf index theorem. Although this proofis neither the shortest nor the simplest, we hope the invitation it offers entices the reader to learn moreabout differential topology.

Theorem 1 (Fundamental Theorem of Algebra). A polynomial p(z) = anzn + · · ·+a1z+a0 with complex
coefficients and an 6= 0 has n roots, counting multiplicities.

Our general strategy is to analyze the critical points of the function f (z) = |p(z)|2. Since f isnonnegative, f takes a minimum value at each root of p, so one would expect an analysis of the extremaof f yield useful information. Indeed, there is a well-known proof of the fundamental theorem of algebra(c.f. [2]) which uses compactness and the open mapping principle to show that there exists a critical pointof f which is also a root of p.We are interested here in a more holistic argument — one that finds all n roots in one fell swoop— and for this we shall require a full analysis of the critical points of f . A direct computation using theCauchy-Riemann equations reveals ∇|p(z)|2 = 2p(z)p′(z), so the zeros of ∇f are precisely the roots of
p and p′.The following thought experiment captures the intuitive idea of our approach: Imagine starting with anarbitrary z ∈ C and flowing by −∇f — the vector field which points in the direction of fastest decreaseof f — in hopes of ending at a root of p. One can visualize such a trajectory as the projection onto Cof the path a particle on the graph of f would take, moving under the influence of gravity. The problemwith this argument is that in general, there are trajectories of the flow which end at roots of p′ — inother words, one could get ‘stuck’ before finding an absolute minimum. As we will see below, roots of p′correspond to saddle points on the graph of f , and we will need a theory which simultaneously accountsfor both types of critical points.Morse theory is a branch of differential topology concerned with these types of situations — gradientvector fields on manifolds and their critical points — and has a framework for understanding interactionsbetween critical points. In particular, the Morse inequalities (see [4]) relate the local behavior of agradient vector field near its zeros and the topology of the underlying space. The Morse inequalities willnot directly apply here, but the more general Poincaré-Hopf theorem does and will imply that if p′ has
n − 1 roots, then p must have n roots.
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To begin in earnest, we define some notions from differential topology. Suppose M is a smoothoriented surface and V is a smooth vector field on M . If V (x) = 0 for some x ∈ M we say x is a zero of

V ; if further there is r > 0 such that V (y) 6= 0 for y ∈ B(x, r) \ {x}, where B(x, r) is a coordinate ball ofradius r , we say x is an isolated zero of V . We then define the index of V at an isolated zero x, ind(x),to be the winding number of the map
V
|V | : S1(r)→ S1(1),

that is, ind(x) is 2π times the change in oriented angle V /|V | makes after traveling counterclockwise oncearound a small circle centered at x . This has an inviting physical interpretation: if you imagined rigidlymoving the ends of the vectors V from the circle of radius r to the origin, the index is the number of timesthe tips of these vectors winds around the origin.
Example 2. Consider the vector fields W1,W2 : R2 → R2 defined by

W1(x, y) = (x, y) and W2(x, y) = (x,−y).
Both W1 and W2 have isolated zeros at (x1, x2) = (0, 0). It is easy to see that the indices of W1 and
W2 at (0, 0) are 1 and −1 respectively: W1 winds steadily around 0 as one traverses the unit circlecounterclockwise, while the presence of the minus sign in W2 reverses orientation and and it windsaround in the negative direction. Both W1 and W2 are gradient vector fields: W1 = 12∇ (x2 + y2)

(a) W1 = (x, y) (b) W2 = (x,−y)
Figure 1: The vector fields W1 and W2 have respectively index 1 and −1 zeros at the origin.

and W2 = 12∇ (x2 − y2). In accordance with the flow picture mentioned before, the zeros of W1,W2correspond to maximum and saddle points, respectively, of their underlying potential functions. Althoughthis may seem like a toy example, the vector field ∇F we will investigate later has zeros which locallybehave like small perturbations of W1 and W2.
The index ind(x) in fact does not depend on r or the choice of local coordinates [3] and for this reasonit is a potentially useful invariant. The Poincaré-Hopf index theorem (c.f. [3]) asserts that the sum of allof the indices of V is an invariant of M :
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Theorem 3 (Poincaré-Hopf). Suppose M is an oriented, closed surface and V is a smooth vector field on
M with isolated zeros. Then

χ (M) = ∑
{x :V (x)=0}ind(x).

One should think of the Poincaré-Hopf theorem as a conservation law among flow lines of V . It wasproven by Poincaré and later generalized to higher dimensions by Hopf (information about Hopf’s versioncan be found in [3]). It is fundamental to differential topology because it relates analytic information— the local behavior of a particular V near its zeros — to a global topological invariant — the Eulercharacteristic χ (M). Very roughly speaking, one can imagine relating χ (M) to information furnished by
V via a triangulation of M whose vertices are the zeros of V and edges are certain flow lines of V .The Poincaré-Hopf index theorem has far reaching consequences — for instance, it immediatelyimplies that every smooth vector field on the sphere (which satisfies χ (S2) = 2) must vanish somewhere(the so-called “Hairy Ball theorem”). On the other hand, it is easy to see that smooth non-vanishingvector fields do exist on the torus.As we saw above, the vector field −∇f defined on C has only isolated zeros, and these occur at theroots of p and p′. We would like to apply the Poincaré-Hopf theorem to −∇f , but the theorem does notapply because C is not compact. To get around this, we will use stereographic projection to compactify
C to the Riemann sphere S2 = {(x1, x2, x3) ⊂ R3 : x21 + x21 + x23 = 1} and then appropriately transplant
p and f to S2.Specifically, we use stereographic projection from the north pole and its inverse (and making the usualidentification z = x + iy between C and R2),

S+ : S2 \ {(0, 0, 1)} → C by S+(x1, x2, x3) = ( x11− x3 , x21− x3
)
,

S−1+ : C→ S2 by S−1+ (z) = (Re(z), Im(z), |z|2 − 1)1 + |z|2 .

We define an extension P : S2 → S2 of p by
P(x) = {S−1+ ◦ p ◦ S+(x) x 6= (0, 0, 1)(0, 0, 1) x = (0, 0, 1).

It is not difficult to check that P is smooth, even at (0, 0, 1). We define
F : S2 → R by F (q) = x3 ◦ P(q)

to be the x3-coordinate function of this extension. Note that a point q ∈ S2 where F attains its minimumpossible value, i.e. F (q) = −1, corresponds to a root of p, since p(S+(q)) = 0. If we think of deforming
S2 in R3 by the map P , F (q) is nothing but the height of P(q) in R3. This gives a particularly vividpicture in R3 (see Figure 2): −∇F points everywhere in the direction of fastest decrease of F , in otherwords, in the tangent direction with most negative x3-coordinate. As mentioned before, one could imagineflowing by −∇F as a mechanism for finding roots of p.1 Of course, flowlines ending at roots of p′ are anobstruction to this program. The Poincaré-Hopf theorem asserts an invariant relating zeros of p to zerosof p′, so we push on to analyze the local behavior of −∇F near its zeros. Actually, since −∇F and ∇Fhave the same indices, we will work with ∇F for convenience.

1This is exactly the type situation in which one wants to apply Morse theory. However, it will turn out that F vanishes tosecond order at (0, 0, 1) when n > 2, and Morse theory requires that the second derivatives of F have a certain nondegeneracy.
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Figure 2: The Sphere S2 stratified by the height function F (when p is a quadratic polynomial). Theheight F is minimum at the roots zr , zr of p. F has a saddle at the root zd of p′ and a global maximumat (0, 0, 1) =∞.
For x 6= (0, 0, 1), in stereographic coordinates we have the coordinate map

F ◦ S−1+ (z) = |p(z)|2 − 11 + |p(z)|2 = 1− 21 + |p(z)|2 . (1)
Since ∇|p(z)|2 = 2p(z)p′(z) as before, the zeros of ∇F in S2 \ {(0, 0, 1)} are precisely the roots of pand p′.We assume at first that p′ has no multiple roots. We may also assume by factoring if necessary that
p has no roots in common with p′. If z0 is a root of p, by expanding (1) near z0,

F ◦ S−1+ (z) = −1 + 2 |p(z)|2 + O(|p(z)|4)= −1 + |p′(z0)|2|z − z0|2 + O
(
|z − z0|3) .

Hence in these coordinates, ∇F is of the form
2|p′(z0)|2 (z − z0) + O

(
|z − z0|2) ,

and so up to higher order terms is a translation and scaling of the field W1 = (x, y) from Example 1.Therefore, each root of p corresponds to a zero of ∇F with index one.By a similar expansion of (1) near a root z′ of p′, one has locally
F ◦ S−1+ (z) = 1− 21 + |p(z′)|2 + 4(1 + |p(z′)|2)2 Re(p(z′)p′′(z′)(z − z′)2) + O(|z − z′|3).

Using that Re (z2) = x2 − y2 and that p′(z′), p′′(z′) 6= 0, we see that up to higher order perturbationterms, ∇F is locally a translation, rotation, and scaling of the vector field (x,−y) - the vector field W2from Example 1! Hence any root of p′ corresponds to a zero of ∇F with index −1.It remains to investigate the behavior of∇F near (0, 0, 1), and for this we use stereographic projectionfrom the south pole S− : S2 \ {(0, 0, −1)} → C as a chart map. Using the formula
S+ ◦ S−1

− (z) = 1̄
z ,
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we find

F ◦ S−1
− (z) = 1− |H(z)|21 + |H(z)|2 , where H(z) = zn

ān + ān−1z + · · ·+ ā0zn . (2)
Using that H(0) = 0, we have after expanding (2) that

F ◦ S−1
− (z) = 1− 2|H(z)|2 + O(|H(z)|4). (3)

Since H is analytic in a neighborhood of 0,
|H(z)|2 = |zn|2( 1

|ān|2 + O(|z|)) .
Combining this with (3) yields

F ◦ S−1
− (z) = 1− 2

|ān|2 |zn|2 + O(|z|2n+1).
Arguing similarly to the previous cases, we find ∇F has a zero of index one at (0, 0, 1).By the work above, the zeros of ∇F are isolated and occur at roots of p, with index 1 roots of p′and at (0, 0, 1). Furthermore zeros of these three types have indices respectively 1, −1 and 1. Arguinginductively, there are n − 1 zeros of p′, so the Poincaré-Hopf index theorem implies the number of zeros
Zp of p satisfies

2 = χ (S2) = ∑
{x :∇F (x)=0} ind(x)

= 1− (n − 1) + Zp,

so Zp = n.The case where p′ has multiple roots follows in a straightforward way from the case above by takinga limiting sequence of polynomials pk → p where p′k has n − 1 distinct roots.
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