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Abstract. Using a two-point maximum principle technique inspired by
work of Brendle and Andrews-Li, we give a new proof of a special case
of Alexandrov’s theorem: that there are no embedded constant mean
curvature tori in Euclidean three-space.

1. Introduction

Background and main results.
Constant mean curvature (CMC) surfaces are widely studied in geometric

analysis, and there are still many important problems pertaining to their
existence and classification. A fundamental result of Alexandrov [1] asserts
that the only closed and embedded CMC hypersurfaces in Rn are the round
spheres. Wente showed that the embeddedness hypothesis in Alexandrov’s
theorem is necessary by constructing [16] examples of immersed CMC tori
in R3, and later Kapouleas constructed [10, 11] immersed CMC surfaces in
R3 of each genus greater than one.

Alexandrov’s proof introduced an ingenious technique now known as the
method of moving planes, which has become an important tool in geometry
and analysis [9, 14, 12]. This method applies the maximum principle to
pieces of a surface that have been reflected about the one-parameter family
of hyperplanes in Rn normal to a prescribed axis.

In the last decade, a number of important problems in geometry and
analysis have been solved [3, 6, 4] by applying the maximum principle to
a function depending on pairs of points of the underlying space. Among
these were Brendle’s characterization [6] of the Clifford torus as the only
embedded minimal torus in the round three-sphere S3, and later Andrews-
Li’s classification [4] of the embedded CMC tori in S3 by their rotational
symmetry. For more information about recent applications of two-point
maximum principles, we refer to the survey articles [2, 7].

It is natural to wonder whether Brendle’s approach and its adaptation
by Andrews-Li applies to the setting of CMC tori in R3. The main result
of this paper is to prove the following special case of Alexandrov’s theorem
using a two-point maximum principle:

Theorem 1.1. There are no embedded CMC tori in R3.
1
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Using the same techniques, we prove the following in the noncompact
setting.

Theorem 1.2. Let F : Σ→ R3 be a CMC embedding with no umbilic points.
If M := F (Σ) is complete and singly periodic with compact quotient, then
M is rotationally symmetric.

Theorem 1.2 is a special case of a result [12, Theorem 2.10] of Korevaar-
Kusner-Solomon—proved using the method of moving planes—which asserts
that a properly embedded CMC surface contained in a solid cylinder is
rotationally symmetric with respect to the axis of the cylinder.

The conclusions of Theorems 1.1 and 1.2 still hold if M is assumed to be
only Alexandrov immersed instead of embedded, and the proofs given here
could be appropriately modified in the spirit of [5] to apply to Alexandrov
immersions.

Outline of the methods.
While the methods in this paper closely follow those in [4] and [6], we

summarize the strategy for completeness. In Section 3, we introduce the
inscribed radius at a point p on a closed and embedded surface Σ ⊂ R3,
which is the radius of the largest ball tangent to p and contained in the
region bounded by Σ. By using local information at p, it is clear that the
inscribed radius must be at most the reciprocal 1/λ1 of the larger principal
curvature λ1. While in general, the inscribed radius may be smaller (see
Figure 1), we show in Theorem 4.1 that the inscribed radius on an embedded
CMC torus is everywhere equal to 1/λ1.

p

Figure 1. A schematic of a surface Σ whose inscribed radius
at p ∈ Σ—the radius of the smaller ball—is less than 1/λ1

(the radius of the larger ball).

The proof of Theorem 4.1 involves applying the maximum principle to a
geometrically motivated function Z : Σ × Σ → R. Z depends on a smooth
positive function Φ : Σ→ R, and Z(x, ·) is everywhere nonnegative precisely
when (see Proposition 3.2) the inscribed radius of Σ at x is at least 1/Φ(x).
It turns out that at a critical point, Z satisfies a PDE (see Proposition
3.13) related to the Simons equation satisfied by the norm squared of the
second fundamental form h. Using these equations in conjunction with the
maximum principle applied to Z proves that Φ = 1/λ1, and Theorem 4.1
follows.
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To prove Theorem 1.1, we consider an orthonormal frame {e1, e2} for Σ
and show using Theorem 4.1 that h is parallel in the e1 direction. This
suggests that M is rotationally symmetric, and we show in Lemma 4.8 that
the axis L orthogonal to both e1 and the acceleration vector field ∇e1e1 is
constant on Σ. We then find a point p ∈ Σ with TpΣ = L⊥, and it follows
that p is an umbilic point of Σ, which contradicts [8].

The hypotheses of Theorem 1.2 allow us to conclude in essentially the
same way as in the setting of Theorem 1.1 that the line L above is constant
on Σ, and we prove Theorem 1.2 by constructing a rotationally symmetric
parametrization for Σ with L as its axis.

2. Preliminaries

Notation and basic definitions.
Let Σ be a closed surface, F : Σ → R3 be an embedding, and ν be the

unit outward pointing normal field on M := F (Σ). Let g denote the metric
on M induced by the Euclidean metric δij on R3. We denote the Levi-Civita

connection on R3 induced by δij by ∇ and the Levi-Civita connection on M
induced by g by ∇.

The shape operator is the endomorphism defined by B(w) = ∇wν, where
w is a tangent vector on M . Its eigenvalues are called the principal cur-
vatures and will be denoted λ1, λ2, where λ1 ≥ λ2. Then, the scalar
second fundamental form on M is the symmetric two-tensor defined by
h(v, w) = 〈B(v), w〉 = 〈∇vν, w〉 = −〈∇vw, ν〉. The mean curvature of M is

H = λ1+λ2
2 , and the trace-free second fundamental form on M is the sym-

metric two-tensor
◦
h defined by

◦
h = h−Hg. Elementary computations show

that |
◦
h|2 = |h|2 − 2H2 and λ1λ2 = 2H2 − |h|

2

2 .
The Riemann curvature tensor on M is defined by

Rm(X,Y, Z,W ) = 〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W 〉,

and the Gauss equation asserts that Rijkm = hjkhim−hikhjm, where Rijkm
and hjk denote components of the curvature tensor and of the second fun-
damental form in any local frame {Ei}. The Codazzi equation states that

(∇Xh)(Y, Z) = (∇Zh)(Y,X), equivalently hij;k = hkj;i,

where the indices after the semicolon are the ones corresponding to covariant
differentiation. We also recall the Ricci identity :

(2.1) hij;kl = hij;lk +
∑
m

Rkjimhmj +
∑
m

Rlkjmhmi.

Lastly, we let hmi denote the mth component of B(Ei), and we define
gij = g(Ei, Ej). These can be shown to satisfy

(2.2) hij =
∑
m

gimh
m
j .
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The Simons equation.
The following partial differential equations concerning the norm squared

of the second fundamental form of a CMC immersion are well-known [15, 13],
although we provide a proof for completeness.

Proposition 2.3. Suppose that F : Σ→ R3 is a CMC immersion. Then

(i) 1
2∆|h|2 = |∇h|2 − |h|4 + 6|h|2H2 − 8H4.

(ii) 1
2∆|

◦
h|2 = |∇h|2 − |

◦
h|4 + 2|

◦
h|2H2.

(iii) Whenever µ := |
◦
h|/
√

2 = λ1 −H = 1
2(λ1 − λ2) is nonzero,

∆µ− |∇µ|
2

µ
+ 2(µ2 −H2)µ = 0.

Proof. To prove (i), let x ∈ Σ, and choose normal coordinates about x.
Calculating and using the Codazzi equation, we find that

1

2
∆|h|2 =

∑
i,j

1

2
∆h2

ij

=
∑
i,j,k

hijhij;kk + |∇h|2

=
∑
i,j,k

hijhik;jk + |∇h|2.

From the preceding, (2.1), and the Gauss equation, we find

1

2
∆|h|2 =

∑
i,j,k

hijhik;kj +
∑
i,j,k,m

hijRkjmihmk +
∑
i,j,k,m

hijRkjmkhmi + |∇h|2

=
∑
i,j,k

hijhkk;ij +
∑
i,j,k,m

hij(hkihjm − hjihkm)hmk

+
∑
i,j,k,m

hij(hkkhjm − hjkhkm)hmi + |∇h|2

=
∑
i,j

hij(2H);ij +
∑
i,j,k,m

hijhkihjmhmk −
∑
i,j,k,m

hijhjihkmhmk

+
∑
i,j,k,m

hijhkkhjmhmi −
∑
i,j,k,m

hijhjkhkmhmi + |∇h|2.

Since H is constant and the second and fifth sums above cancel, we find

1

2
∆|h|2 = −

∑
i,j,k,m

hijhjihkmhmk +
∑
i,j,k,m

hijhkkhjmhmi + |∇h|2

= −|h|4 + 2H
∑
i,j,m

hijhjmhmi + |∇h|2.
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We further compute that∑
i,j,m

hijhjmhmi = λ3
1 + λ3

2

= (λ1 + λ2)3 − 3λ1λ2(λ1 + λ2)

= 8H3 − 3(2H2 − 1

2
|h|2)(2H)

= −4H3 + 3|h|2H.

Combining this with the preceding proves (i). Item (ii) follows directly from

using (i), that |h|2 = |
◦
h|2 + 2H2, and that H is constant so ∆H2 = 0.

Next, consider a point where |
◦
h| is nonzero. By a straightforward cal-

culation using the Codazzi equations and that H is constant, we have that

|∇h|2 = 2|∇|
◦
h||2, and therefore from item (ii) that

1

2
∆|
◦
h|2 = 2|∇|

◦
h||2 − |

◦
h|4 + 2|

◦
h|2H2.

Because |
◦
h|2 = 2µ2, we conclude that

(2.4) ∆µ2 = 4|∇µ|2 − 4µ4 + 4µ2H2.

Since ∆µ2 = 2µ∆µ+ 2|∇µ|2, item (iii) follows by rearranging (2.4). �

3. The Inscribed Radius and the Two-Point Function

Suppose now that Σ is a closed surface and that F : Σ → R3 is an em-
bedding. Since M := F (Σ) is closed and embedded, it bounds a precompact
region Ω ⊂ R3. We call the radius of the largest ball contained in Ω and
tangent to M at F (x) the inscribed radius of M at F (x).

Now fix a positive smooth function Φ : Σ → R. We define a function
Z : Σ× Σ→ R by

(3.1) Z(x, y) =
Φ(x)

2
|F (y)− F (x)|2 + 〈F (y)− F (x), ν(x)〉.

Proposition 3.2. Z is everywhere non-negative if and only if for every
x ∈ Σ, the inscribed radius of M at F (x) is at least 1/Φ(x).

Proof. Let x ∈ Σ and consider the ball B with center F (x)− 1
Φ(x)ν(x) and

radius 1/Φ(x). B is tangent to M at F (x), and the condition that B ⊂ Ω
is equivalent to the condition that

(3.3)

∣∣∣∣F (y)−
(
F (x)− 1

Φ(x)
ν(x)

)∣∣∣∣2 ≥ 1

Φ2(x)
∀y ∈ Σ.

By expanding, we see that (3.3) is equivalent to 2
Φ(x)Z(x, y) ≥ 0 for all

y ∈ Σ, which implies the conclusion. �
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We now assume that M has constant mean curvature H. Since M is
closed, our earlier conventions imply that H ≥ 0. Moreover, since there are
no closed embedded minimal surfaces in R3, we may assume that H > 0.

Assumption 3.4. We assume that Z as in (3.1) is everywhere non-negative,
and that Z(x, y) = 0 for some pair of distinct points x, y ∈ Σ.

Note that the differential of Z vanishes at (x, y). Moreover, the reflection
R : R3 → R3 about the planar subspace orthogonal to F (y)−F (x) given by

(3.5) R(z) = z − 2

〈
F (y)− F (x)

|F (y)− F (x)|
, z

〉
F (y)− F (x)

|F (y)− F (x)|
maps the tangent space to M at x to the tangent space of M at y (See
Figure 2).

Choice of Coordinates.
We now choose convenient coordinate systems about F (x) and F (y),

which we sometimes write as x and y respectively to make notation sim-
pler. About F (x) we choose normal coordinates (x1, x2) diagonalizing the
second fundamental form at F (x), so that

(3.6) h

(
∂F

∂xi
,
∂F

∂xj

)
= λiδij at F (x).

Moreover, at F (x), (2.2) becomes

(3.7) hij =
∑
m

gimh
m
j =

∑
m

δimh
j
m = h ji .

About F (y) we take normal coordinates (y1, y2) whose coordinate vectors
are the images under R of the corresponding coordinate vectors at F (x), that
is ∂F

∂yi
(y) = R

(
∂F
∂xi

(x)
)

as seen in Figure 2.

F (x)

F (y)

R

Figure 2. A schematic of how the reflection R is used to
make convenient coordinates at F (y).

Lemma 3.8. The following equations hold:

(3.9) 〈F (y)− F (x), ν(x)〉 = −Φ(x)

2
|F (y)− F (x)|2
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(3.10)

〈
F (y)− F (x),

∂F

∂xi
(x)

〉
=
|F (y)− F (x)|2

2

∂Φ
∂xi

(x)

Φ(x)− λi(x)

(3.11)
∂F

∂yi
(y)− ∂F

∂xi
(x) = −

∂Φ
∂xi

(x)

Φ(x)− λi(x)
(F (y)− F (x))

(3.12) ν(y)− ν(x) = Φ(x)(F (y)− F (x)).

Proof. Identity (3.9) follows from rearranging the equation Z(x, y) = 0 using
(3.1). Equation (3.10) follows from computing

∂Z

∂xi
=

1

2

∂Φ

∂xi
|F (y)− F (x)|2 − Φ(x)

〈
F (y)− F (x),

∂F

∂xi

〉
−
〈
∂F

∂xi
, ν(x)

〉
+

〈
F (y)− F (x),

∑
p

h pi (x)
∂F

∂xp

〉
and evaluating at (x, y) using (3.6), (3.7), and ∂Z

∂xi
(x, y) = 0. Equation (3.11)

follows from applying (3.5) to z = ∂F
∂xi

(x) and using (3.10). Equation (3.12)
follows from applying (3.5) with z = ν(x) and using (3.9). �

Properties of the function Z.

Proposition 3.13. If Φ(x) > λ1, then at the point (x, y)∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z =

=
|F (y)− F (x)|2

2

(
∆Φ− 2

∑
i

(
∂Φ
∂xi

)2
Φ(x)− λi(x)

+ (|h|2(x)− 2HΦ(x))Φ(x)

)
.

Proof. Using (3.1), we compute(
∂

∂xi
+

∂

∂yi

)
Z =

=
1

2

∂Φ

∂xi
|F (y)− F (x)|2 + Φ(x)

〈
∂F

∂yi
− ∂F

∂xi
, F (y)− F (x)

〉
+

〈
∂F

∂yi
− ∂F

∂xi
, ν(x)

〉
+

〈
F (y)− F (x),

∑
p

h
p(x)
i

∂F

∂xp

〉

=
1

2

∂Φ

∂xi
|F (y)− F (x)|2 +

〈
∂F

∂yi
− ∂F

∂xi
,Φ(x)(F (y)− F (x)) + ν(x)

〉
+
∑
p

h pi (x)

〈
F (y)− F (x),

∂F

∂xp

〉
.
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We compute the second derivatives and sum over i to see that

∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z =

=
|F (y)− F (x)|2

2

∑
i

∂2Φ

∂(xi)2
+ 2

∑
i

∂Φ

∂xi

〈
∂F

∂yi
− ∂F

∂xi
, F (y)− F (x)

〉
+
∑
i

〈
∂2F

∂(yi)2
− ∂2F

∂(xi)2
,Φ(x)(F (y)− F (x)) + ν(x)

〉

+
∑
i

Φ(x)

∣∣∣∣∂F∂yi − ∂F

∂xi

∣∣∣∣2 + 2
∑
i,p

h pi (x)

〈
∂F

∂yi
− ∂F

∂xi
,
∂F

∂xp

〉

+
∑
i,p

h pi (x)

〈
F (y)− F (x),

∂2F

∂xi∂xp

〉

+
∑
i,p

h pi ,i(x)

〈
F (y)− F (x),

∂F

∂xp

〉
.

At x, we now remark that

∂2F

∂(xi)2
(x) =

〈
∇ ∂F

∂xi

∂F

∂xi
(x), ν(x)

〉
ν(x) +

∑
j

〈
∇ ∂F

∂xi

∂F

∂xi
(x),

∂F

∂xj
(x)

〉
∂F

∂xj
(x)

= −hii(x)ν(x) + Γjii(x)
∂F

∂xj
(x) = −λiν(x),

since all the Christoffel symbols vanish at x by our choice of coordinates.
A similar equation holds true at y. We also note that from our choice of
coordinates and the Codazzi Equations, at x we obtain∑

i

h pi ,i =
∑
i

h pi ;i =
∑
i

h p
ii; = (2H) p; = 0.

Hence when we evaluate at (x, y) using (3.6), (3.7), and the above consid-
erations, we find that

∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z
∣∣∣
(x,y)

=

=
|F (y)− F (x)|2

2
∆Φ + 2

∑
i

∂Φ

∂xi

〈
∂F

∂yi
− ∂F

∂xi
, F (y)− F (x)

〉

− 2H 〈ν(y)− ν(x),Φ(x)(F (y)− F (x)) + ν(x)〉+
∑
i

Φ(x)

∣∣∣∣∂F∂yi − ∂F

∂xi

∣∣∣∣2
+ 2

∑
i

λi(x)

〈
∂F

∂yi
− ∂F

∂xi
,
∂F

∂xi

〉
− |h|2(x) 〈F (y)− F (x), ν(x)〉 .
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The conclusion now follows from substituting using Lemma 3.8 and simpli-
fying. �

Corollary 3.14. If Φ(x) > λ1, then at (x, y) we have∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z ≤ |F (y)− F (x)|2

2

(
∆Φ− |∇Φ|2

Φ−H
+ (|h|2 − 2HΦ)Φ

)
.

Proof. The result follows from combining Proposition 3.13 with the esti-
mates

Φ− λ2 = Φ + λ1 − 2H ≤ 2(Φ−H) and Φ− λ1 ≤ 2(Φ−H).

�

4. Proof of Theorem 1.1

We now assume that Σ is a torus and that F : Σ → R3 is a CMC
embedding. Since M has no umbilical points [8], we can define a smooth
orthonormal frame {e1, e2} on M satisfying

h(e1, e1) = λ1, h(e1, e2) = 0, and h(e2, e2) = λ2.

We may also assume that {e1, e2, ν} is a positively oriented frame for R3.

Theorem 4.1. If Σ is a torus and F : Σ→ R3 is a CMC embedding, then
for all x ∈ Σ, the inscribed radius at F (x) is equal to 1/λ1(x).

Proof. We follow the outline of the proof of Theorem 5 in [4]. Let x ∈ Σ
and γ a geodesic on Σ satisfying γ(0) = x. It follows that

2〈F (γ(s))− F (x), ν(x)〉
s2

= −hx(γ̇, γ̇) +O(s).

Now fix a positive constant κ and define Φ = κµ+H, where µ := λ1−H
is as in Proposition 2.3(iii). It follows that

Z(x, γ(s)) =
1

2
(κµ+H − hx(γ̇, γ̇)) s2 +O(s3).(4.2)

By using (4.2) with a geodesic γ satisfying γ̇(0) = e1, and by noticing that
h(γ̇, γ̇) = λ1 = µ+H, we obtain that

(4.3) Z(x, γ(s)) =
1

2
(κ− 1)µs2 +O(s3).

Hence for any κ < 1, Z takes on negative values near x. Thus by Proposition
3.2 the inscribed radius can not be more that 1/λ1 for any x ∈ Σ. Hence it
suffices to consider κ ≥ 1.

For the remainder of this argument, we define Zκ to be the function Z as
in (3.1) with the choice of Φ = κµ+H. We then define

K := {κ > 0 : Zκ ≥ 0} and κ := inf K.

First we claim that Zκ ≥ 0. If not, then there are x, y ∈ Σ such that
Zκ(x, y) < 0. Since the assignment κ → Zκ(x, y) is continuous, there must
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exist a κ′ ∈ K such that Zκ′(x, y) < 0, which is a contradiction. Hence
κ ∈ K, and we also see that if κ = 1, we are done.

Suppose for the sake of a contradiction that κ > 1. By (4.3), there is
a neighborhood U of the diagonal {(x, x) : x ∈ Σ} such that Zκ > 0 on
U \ {(x, x) : x ∈ Σ} for all κ sufficiently close to κ.

We now claim that there exists a point (x, y) with x 6= y satisfying
Zκ(x, y) = 0. If this were not the case, then Zκ would attain a positive
minimum on the compact set Σ × Σ \ U , and using the continuous depen-
dence of Zκ on κ, it would follow that Zκ is nonnegative on Σ × Σ for κ
close to, but strictly less than κ. This contradiction of the minimality of κ
proves the claim.

Since (x, y) minimizes Zκ,∑
i

(
∂

∂xi
+

∂

∂yi

)2

Zκ

∣∣∣∣
(x,y)

≥ 0.(4.4)

On the other hand, the preceding shows that Assumption 3.4 holds. Since Σ
has no umbilic points by [8], by combining Corollary 3.14 with Proposition
2.3(iii), we find that∑

i

(
∂

∂xi
+

∂

∂yi

)2

Zκ

∣∣∣
(x,y)
≤ −(κ2 − 1)|F (y)− F (x)|2µ2H < 0.

This contradicts (4.4) and concludes the proof. �

Below, we repeatedly use that the Christoffel symbols Γkij := 〈∇eiej , ek〉
in the frame {e1, e2} satisfy Γkij = −Γjik, and also for all i, j, k ∈ {1, 2} that

ek(h(ei, ej)) = (∇ekh)(ei, ej) + Γmkih(em, ej) + Γmkjh(ei, em).(4.5)

Lemma 4.6. We have that (∇e1h)(e1, e1) = 0 everywhere.

Proof. For simplicity, we identify Σ with its image under the embedding
F . Fix a point x ∈ Σ and consider the geodesic γ(t) = expΣ

x (te1(x)). By
Proposition 3.2 and Theorem 4.1, the function f : R→ R defined by

f(t) =
λ1

2
|γ(t)− x|2 + 〈γ(t)− x, ν(x)〉

is everywhere nonnegative. We calculate

f ′(t) = 〈γ̇(t), λ1γ(t)− λ1x+ ν(x)〉,
f ′′(t) = λ1 − h (γ̇(t), γ̇(t)) 〈ν(γ(t)), λ1γ(t)− λ1x+ ν(x)〉,
f ′′′(t) = −(∇γ̇(t)h)(γ̇(t), γ̇(t))〈ν(γ(t)), λ1γ(t)− λ1x+ ν(x)〉

− h(γ(t), γ(t))〈∇γ̇(t)ν, λ1γ(t)− λ1x+ ν(x)〉,

from which it follows easily that f(0) = f ′(0) = f ′′(0) = 0. Since f is
nonnegative, it follows that 0 = f ′′′(0) = (∇e1h)(e1, e1). �
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Corollary 4.7. The Christoffel symbols with respect to the frame {e1, e2}
satisfy Γ2

11 = e2(µ)
2µ and Γ2

21 = 0. Equivalently,

∇e1e1 =
e2(µ)

2µ
e2, ∇e2e1 = 0,

∇e1e2 = −e2(µ)

2µ
e1, ∇e2e2 = 0.

Proof. The equivalence of the statements above is clear from the symmetries
of the Christoffel symbols. Considering the instances of (4.5) when (i, j, k)
are the ordered three-tuples (1, 2, 1), (1, 1, 2), and (1, 2, 2) and simplifying
gives

(∇e1h)(e1, e2) = (λ1 − λ2)Γ2
11 = 2µΓ2

11,

(∇e2h)(e1, e1) = e2(λ1) = e2(µ),

(∇e2h)(e1, e2) = 2µΓ2
21.

The first two of these equations and the Codazzi equations imply Γ2
11 = e2(µ)

2µ .

By combining Lemma 4.6, the constant mean curvature condition, and the
Codazzi equations, we have 0 = (∇e1h)(e1, e1) = (∇e2h)(e1, e2), which by
the third equation above implies Γ2

21 = 0. �

Lemma 4.8. The line L spanned by e1 ×∇e1e1 is constant on M .

Proof. Since M is connected, it suffices to show that the ambient covariant

derivatives of the vector field e1 × ∇e1e1 = λ1e2 + e2(µ)
2µ ν are contained in

L, where the equality follows by computing the cross product and using

Corollary 4.7 to compute ∇e1e1 = e2(µ)
2µ e2 − λ1ν.

We first claim that e1(e2(µ)) = h11,21 = 0. To see this, note first that by a
calculation using Lemma 4.6 and Corollary 4.7, it follows that h11,21 = h11;21

and h11;12 = 0. On the other hand, the Ricci identity (2.1), the symmetries
of the curvature tensor, and our choice of frame imply that h11;21 = h11;12,
which proves the claim. Now, using the claim, and Lemma 4.6, we obtain

∇e1
(
λ1e2 +

e2(µ)

2µ
ν

)
= λ1∇e1e2 +

e2(µ)

2µ
∇e1ν

= 0,

where the second equality uses Corollary 4.7. Next, the Gauss Equation and
and Corollary 4.7 imply that

(4.9)

λ1λ2 = R1221

=
〈
∇e1∇e2e2 −∇e2∇e1e2 −∇[e1,e2]e2, e1

〉
= e2

(
e2(µ)

2µ

)
−
(
e2(µ)

2µ

)2

.
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By using Corollary 4.7, the Gauss Formula, and (4.9), we compute

∇e2
(
λ1e2 +

e2(µ)

2µ
ν

)
= λ1∇e2e2 + e2(λ1)e2 +

e2(µ)

2µ
∇e2ν + e2

(
e2(µ)

2µ

)
ν

= −λ1λ2ν + e2(µ)e2 +
e2(µ)

2µ
λ2e2 + e2

(
e2(µ)

2µ

)
ν

= e2(µ)

(
1 +

λ2

2µ

)
e2 +

(
e2(µ)

2µ

)2

ν

= λ1
e2(µ)

2µ
e2 +

(
e2(µ)

2µ

)2

ν

=
e2(µ)

2µ

(
λ1e2 +

e2(µ)

2µ
ν

)
∈ L.

�

Proof of Theorem 1.1. Because M is a closed surface, there exists a point
p ∈ M such that ν(p) ∈ L, which by Lemma 4.8 implies that λ1(p) = 0.
Since H ≥ 0, we have λ1(p) = λ2(p) = 0, so p is an umbilic point of M ,
which contradicts [8]. �

5. Rotational Symmetry in the Singly Periodic Case

We say that a set S ⊂ R3 is singly periodic if there exists a vector v ∈ R3

such that v + S = S. A singly periodic set has compact quotient if S/∼ is
compact, where ∼ is the equivalence relation on R3 defined by x∼y if and
only if x − y ∈ Zv. For the convenience of the reader, we restate Theorem
1.2.

Theorem 1.2. Let F : Σ→ R3 be a CMC embedding with no umbilic points.
If M := F (Σ) is complete and singly periodic with compact quotient, then
M is rotationally symmetric.

In order to prove Theorem 1.2, we note that the hypotheses that M
has no umbilic points and has compact quotient allow us to repeat the
arguments in Section 4 with only superficial modifications. In particular,
the conclusions of Lemma 4.6, Corollary 4.7, and Lemma 4.8 apply in the
setting of Theorem 1.2. We will prove Theorem 1.2 by constructing in
Proposition 5.8 a rotationally symmetric parametrization for M whose axis
is the line L from Lemma 4.8.

Lemma 5.1. The vector fields E1 := e1√
µ and E2 := e2 commute.

Proof. By Corollary 4.7,[
e1√
µ
, e2

]
=

1
√
µ
∇e1e2 −∇e2

e1√
µ

= −e2(µ)

2µ3/2
e1 +

e2(µ)

2µ3/2
e1 = 0.

�
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L

e1

e2

Figure 3. A sketch of part of M , with the frame {e1, e2}
labeled at a point. In Proposition 5.8 we characterize L as
an axis of rotation of M .

By Lemma 5.1, there are local coordinates (s, t) on M whose coordinate
vectors satisfy (∂/∂s, ∂/∂t) = (E1, E2) (see Figure 2). Then by Lemma 4.6,
we see that λ1, and hence µ, only depends on t.

Lemma 5.2. The following equations hold, where w := µ−
1
2 .

(i) e2(w)
w = − e2(µ)

2µ ,

(ii) e2(e2(w))
w + λ1λ2 = 0,

(iii) There exists a constant C ≥ 4H such that (e2(w))2 + λ2
1w

2 = C.

(iv) |∇e1e1| =
√
C/w.

Proof. Item (i) is an immediate consequence of the definition w = µ−
1
2 .

Item (ii) follows by a calculation combining (i) with (4.9). Multiplying
the equation in (ii) by the integrating factor 2we2(w) and using the identity
λ1λ2 = H2 − µ2 = H2 − w−4 reveals that

e2((e2(w))2 +H2w2 + w−2) = 0.

Using this in combination with fact that E1w = 0 and Lemma 5.1, there is
a constant C such that

(e2(w))2 +H2w2 + w−2 + 2H = C.(5.3)

Estimating (5.3) using the inequality H2w2 + w−2 ≥ 2H reveals that C ≥
4H, and the identity in (iii) follows from (5.3) using that (wH + w−1)2 =
w2λ2

1.
Item (iv) follows from a calculation using Corollary 4.7 and item (iii). �

Remark 5.4.

• The inequality in 5.2(iii) is an equality precisely when µ = H, in
which case M is a cylinder with radius 1/2H.
• It is possible to solve for w explicitly using the identity in 5.2(iii);

see Remark 5.11 for more details.
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We now consider the orthonormal frame {v1, v2, v3} defined on M by

v1 = e1, v2 =
∇e1e1

|∇e1e1|
, v3 = v1 × v2.

Lemma 5.5. Fix p ∈M . We have

v1 = cos(
√
Cs)a + sin(

√
Cs)b,

v2 = − sin(
√
Cs)a + cos(

√
Cs)b,

v3 = c,

where a = v1(p),b = v2(p), and c = v3(p).

Proof. The conclusion will follow once we show that

E1v1 =
√
Cv2, E1v2 = −

√
Cv1, E1v3 = 0,

E2v1 = 0, E2v2 = 0, E2v3 = 0.

By using the definitions and Lemma 5.2(iv), we compute

(5.6)
E1v1 =

1
√
µ
∇e1e1 = w∇e1e1 =

√
Cv2,

E2v1 = ∇e2e1 = ∇e2e1 = 0.

Next, using that v3 = w√
C

(
λ1e2 + e2(µ)

2µ ν
)

, Lemma 5.2(i), e1(w) = 0, and

the calculations of the covariant derivatives of λ1e2 + e2(µ)
2µ ν in Lemma 4.8,

we compute that

E1v3 = E2v3 = 0.(5.7)

Finally, using the identities

0 = Eα〈vi, vj〉 = 〈Eαvi, vj〉+ 〈vi, Eαvj〉,

which hold for any α ∈ {1, 2} and i, j ∈ {1, 2, 3}, we conclude from (5.6)
and (5.7) that

E1v2 = −
√
Cv1, E2v2 = 0.

This completes the proof. �

The proof of Theorem 1.2 follows from the following rotationally symmet-
ric parametrization of M .

Proposition 5.8. The map X : R2 → R3 given by

X(s, t) =
w(t) sin(

√
Cs)√

C
a− w(t) cos(

√
Cs)√

C
b + z(t)c(5.9)

where

z(t) =
1√
C

∫ t

0
λ1(u)w(u)du.

is a parametrization of M .
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Proof. By using Corollary 4.7 and Lemma 5.2, we compute that

v2 = −e2(w)√
C
e2 −

λ1w√
C
ν, v3 =

λ1w√
C
e2 −

e2(w)√
C
ν.(5.10)

We then express the frame {e1, e2, ν} in terms of {v1, v2, v3}: we have
e1 = v1 and by (5.10) that

e2 = −e2(w)√
C
v2 +

λ1w√
C
v3, ν = −λ1w√

C
v2 −

e2(w)√
C
v3.

In combination with Lemma 5.5, we find that

e1 = cos(
√
Cs)a + sin(

√
Cs)b,

e2 =
e2(w)√
C

sin(
√
Cs)a− e2(w)√

C
cos(
√
Cs)b +

λ1w√
C

c,

ν =
λ1w√
C

sin(
√
Cs)a− λ1w√

C
cos(
√
Cs)b− e2(w)√

C
c.

From these identities, it is easily verified using (5.9) that ∂X
∂s = E1 = e1√

µ

and ∂X
∂t = E2 = e2. Therefore X is a parametrization of M , and moreover

M has an axis of revolution parallel to c. �

Remark 5.11. It is possible to use Lemma 5.2(iii) to derive an explicit for-
mula for w. To see this, recall from (5.3) that

(e2(w))2 + w−2 +H2w2 + 2H = C.

Multiplying by 4w2 and setting y = w2, we find

(e2(y))2 + 4H2

(
y2 − yC − 2H

4H2

)
+ 4 = 0.

By completing the square, we find that

(e2(y))2 + 4H2

(
y − C − 2H

2H2

)2

− C2 − 4CH

H2
= 0.(5.12)

The unique solutions of (5.12) are y = C−2H
2H2 +

√
C2−4CH

2H2 sin(2Hu + θ0),
where θ0 ∈ R. Since w ≥ 0, we find that

w(u) =

√
C − 2H

2H2
+

√
C2 − 4CH

2H2
sin(2Hu+ θ0)

for some constant θ0. Hence w is periodic with period π
H .
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