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A Note Regarding Hopf’s Umlaufsatz

Peter McGrath

Abstract. We note an argument proving simultaneously Hopf’s rotation angle theorem and the
C' Jordan curve theorem.

The Jordan curve theorem and Hopf rotation angle theorem are fundamental results
about simple, closed, plane curves (hereafter referred to as Jordan curves). The first of
these asserts that a Jordan curve bounds exactly two regions: an interior and exterior.
The second asserts that the net angle the tangent vector of a positively oriented C!
Jordan curve rotates as the curve is traversed is 2. The purpose of this note is to unite
these theorems with a single proof using a weak tubular neighborhood theorem proved
below. While the application to the Jordan curve theorem is standard [4, Sec. 2.1], it
appears that the application of the tubular neighborhood theorem to the rotation angle
theorem may be new.

Hopf’s theorem (see [1] for an exposition by Hopf), sometimes called the Umlauf-
satz, is often used [2, Chap. 9] in proofs of the Gauss—Bonnet theorem. The Jordan
curve theorem for general continuous curves is very subtle (see, however, [S] for an
accessible proof), and we restrict our considerations to C' curves.

Let {e;, e;} be the standard basis for R? and S! C R? be the unit circle. Let
IT: R — S' be the covering map defined by IT(x) = (cos 27 x, sin 27rx). We may iden-
tify S with [0, 1]/*, where * is the equivalence relation generated by requiring that
0 * 1. Using this identification, any function f : ' — R? may be regarded as a function
f:10, 11 = R?, where £(0) = f(1).

Given p e R?andr > 0,let B,(p) = {g € R? : |g — p| < r}.

The winding number or degree deg(f) of a continuous curve f:S' — R?\ {0}
is an integer (see [3] for an elementary but rigorous introduction) which intuitively
corresponds to % times the net change in oriented angle f makes with a fixed refer-
ence direction as the curve is traversed. More precisely, given any such f, we define
deg(f) := f(1) — £(0), where f : S' — R is the lift of f uniquely determined by re-
quiring that

Mo f= % and f(0) € [0, 1). (1)

The winding number is a homotopy invariant: if f and g are homotopic (written f ~ g),
then deg(f) = deg(g).

A closed curve y : §' — R?is C' if its component functions x(¢) and y(z) are con-

tinuously differentiable and regular if y(¢) # O for all t € [0, 1]. The rotation index of

aregular curve y : §' — R? is defined to be deg(y ). For such a curve y, we define the
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reversal y” : S' — R? by y"(t) = y(1 —t). y" is the same curve as y, but traversed in
the opposite direction, and the rotation index of y" is minus the rotation index of y. If
y : S — R?is a closed plane curve and p € R? \ y (where here, as elsewhere in this
note, we abuse notation slightly by identifying y with its image), the winding number
of y about p is defined to be deg(y — p).

Theorem 1. Let y be a regular, C' Jordan curve. After possibly replacing y by y':

1. (Umlaufsatz) The rotation index of y is one.

2. (Jordan curve theorem) R? \ y is a disjoint union of two path components, the
interior, int(y ), and exterior, ext(y ), which are characterized by

|1 if peint(y)
deg(V—P)—{() if pe€ext(y).

Proof. By compactness, the image of y contains a point with smallest y-coordinate;
suppose without loss of generality that y (0) is such a point. After possibly replacing y
by its reversal y”, we may suppose y(0) = ce; for some ¢ > 0. Choose the continuous
unit normal field v along y such that v, ) = —e>.

For € € R, consider the curve y. defined by y.(t) := y(t) — €v, ). When |€’| is
small, y. should be thought of a “parallel curve” to y. The tubular neighborhood the-
orem [2, Theorem 10.19] asserts that for a smooth Jordan curve y and € > 0 small
enough, the map from y x (—e¢, €) to R? defined by (p, €') = ye(p) is a diffeomor-
phism. For our purposes, the following less general version—proved at the end of the
note—will suffice.

Assertion. There exists € > 0 such that:

(i). For all €’ such that 0 < |€’| < €, the curves y and y. have disjoint images.
(i1). Forallz € [0, 1], if y(t) € B(y(0)), then the y-component of v, is negative.

Now fix some € > 0 such that the assertion holds and define pi, := ¥.(0), pou :=
y_¢(0). We claim that

(a) deg(y — pin) = 1 and deg(y — pou) = 0.
®) ¥ = pin~ ¥

Figure 1. Portions of the curves y, Y., and y_, where €’ € (0, €].

Intuitively (a) encodes the fact that y winds once around pj, and zero times around
Pout, SINce pi, lies just above the lowest point of y, while p,, is entirely below y (see
Figure 1).

The Umlaufsatz follows immediately from combining the first part of (a) with (b).
For the Jordan curve theorem, note that since deg(y — p) is a locally constant function
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of p € R?\ y, (a) implies that R? \ y has at least two path components. We will show
that each point in R? \ y can be connected by a path in R? \ y to a point on either .
or y_, and it will follow from this that R? \ y has at most two path components.

Fix p € R?\ y and let g be a point on y that is closest to p. By elementary geometry,
the line segment connecting p and g is orthogonal to the tangent line to y at g; hence
p = q+dy,forsomed # 0.1f § > 0, consider the point r := g + €v,, whichison y_..
Each point on the line segment from p to r is either closer to p than ¢ is and consequently
not on y by the choice of ¢, or on the curve y_., for some 0 < €’ < € and therefore not
on y by (i). Therefore, the line segment from p to r lies in R? \ y. If § < 0, we take
r := g — €v,, which is on y, and argue in the same way. We conclude that R? \ y has at
most two path components, and this completes the proof of the Jordan curve theorem.

It remains to prove (a) and (b). We first claim that

(v —pin) ' ({(0,y) e R? 1y < 0}) = {0, 1}. (2)

By the choice of y (0), if y (¢) — pin, were on the negative y-axis for some ¢ ¢ {0, 1}, then
y (t) would lie on . for some €’ satisfying 0 < €’ < €, which would contradict (i). Let
I" be the lift of ¥ — pi, as in (1). Since y — pin is C' and y(0) = e, it follows from
(2) and the intermediate value theorem that deg(y — pi,) = I'(1) — I'(0) = 1. By the
choice of y(0), the image of y — po, omits the entire negative y-axis, so an argument
similar to the one above shows deg(y — pou) = 0. This proves (a).

For (b), define H : [0, 11> — R?\ {0} by

H(s, 1) = y(t) = ye(s).

Notice that €v,, is equal to the diagonal of H (i.e., €v, ) = H(t, t)). The diagonal of H
is also homotopic to the concatenation V of the left and top sides of the domain square
given by

C[HO.2)  if 1e[0,1/2]
W*{mmqﬁ)ﬁrewzu

We now claim that the image of the second loop in this product omits the entire
positive y-axis and hence is nullhomotopic. To see this, suppose for the sake of a con-
tradiction that there exists t € S' such that y(0) — y.(¢) lies on the positive y-axis. The
choice of y(0) implies that y () — y(0) and y(¢) — y(t) = €v, () each have positive
y-components and that |y (0) — y(¢)| < €. This contradicts (ii).

Consequently, since y — pi, = H(0, -), it follows that y — p;, ~ v,,. Since the maps
v, and y differ by constant angle 7, we see that v, ~ y; hence y — pi, ~ ¥ and (b)
holds. |

Proof of Assertion. We first show there exists € > 0 such that (i) holds. Suppose for
1

the sake of a contradiction that for each k € N, there exists €, such that 0 < |¢;| < y
and #, t; € [0, 1] such that y () = y,,(#;). By compactness, we may suppose that both
(ti)ken and (1 )ren converge. Since y is embedded, both sequences have the same limit,
say f~. By a change of coordinates, we may suppose Y (f~) = 0 and y (t»,) = ce;, for
some ¢ > 0. Since y is C I there exists 8 > 0 such that, for all ¢ sufficiently close to
fss, ¥ (t) lies on the graph of a function f € C'((=38, §)) satisfying £(0) = f'(0) = 0.
Then for all sufficiently large k € N, there exist x, x; € (=4, §) satisfying limy_, oo xx =
limy_, o X}, = O such that

&(f'(g), =D

Y
1+ (f(x))
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y(t) = (i, ), Ve (ty) = (g, f()) — 3)



From the assumption that y (t;) = y,(#;) and (3), we conclude

fOo) —f) 1
Xp — X, fx)

which is clearly a contradiction, since (because f is C') the left side of (4) approaches
zero as k — oo, while the magnitude of the right-hand side is unbounded as k — oo.

We next show that (ii) holds as long as € > 0 is small enough. Since v, ) = —e»,
choose (by continuity) § > 0 such that if 0 <t <§ or 1 — 8 <t <1 then v, has
negative y-component. If € > 0 is sufficiently small, then B.(y(0)) is disjoint from
the image of [§, 1 — §] under y (since this image is compact). For such a choice of
€,1f y (1) € B<(y(0)), then either r < § or r > 1 — 4, and therefore v, ) has negative
y-component. |

“)
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